### ANNUAL EXAM 2022-23 Class IX Mathematics

Time 3 hrs

MM- 80

### Note: All questions are compulsory; marks are indicated under the section.

# Section –A(each question carries 01 mark)

| 1.                                                | Which graph is parallel to (a) y=x+1                                                              | x-axis?<br>(b) y=2                                      | (c) x=3                                  | (d) x=2y                                       |  |  |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------|------------------------------------------------|--|--|--|
| 2.                                                | Which point lies on x-axis<br>(a) (3, 2)                                                          | ?<br>(b) (-3, 2)                                        | (c) (2, 0)                               | (d) (-1,-2)                                    |  |  |  |
| 3 V                                               | Vhat is the median of the o<br>(a) 54                                                             | data 78, 56, 22, 34, 45, 5<br>(b) 53                    | 54, 39, 68, 54, 84?<br>(c) 55            | (d) 51                                         |  |  |  |
| 4.                                                | The number of zeros of a                                                                          | polynomial $x^2 + 4x + 2i$                              | is                                       |                                                |  |  |  |
|                                                   | (a) 1                                                                                             | (b) 2                                                   | (c) 3                                    | (d) none of these                              |  |  |  |
| 5.                                                | The polynomial of type ax<br>(a) linear                                                           | <sup>2</sup> + bx + c, a = 0 is of typ<br>(b) quadratic | e<br>(c) cubic                           | (d) Biquadratic                                |  |  |  |
| 6.                                                | If x + 2 is a factor of $x^3 - 2$<br>(a) 3                                                        | 2ax <sup>2</sup> + 16, then value of a (b) 1            | a is<br>(c) 4                            | (d) 2                                          |  |  |  |
| 7.                                                | If in a parallelogram its di<br>I. Square                                                         | agonals bisect each othe<br>II. Rectangle               | er at right angles an<br>III. Rhombus    | d are equal, then it is a<br>IV. Parallelogram |  |  |  |
| 8.                                                | A quadrilateral with only o<br>I. Trapezium                                                       | one pair of opposite side<br>II. Square                 | es parallel is called:<br>III. Rectangle | IV. Rhombus                                    |  |  |  |
| 9.                                                | The number $(3 - \sqrt{3})(3 + \sqrt{3})$<br>(a) an irrational number<br>(c) not a natural number | 3) is<br>(b) a ration<br>(d) none of                    | al number<br>f these                     |                                                |  |  |  |
| <b>10.</b> On simplifying $8^3 \times 2^4$ we get |                                                                                                   |                                                         |                                          |                                                |  |  |  |
|                                                   | (a) 16 <sup>7</sup> (b) 2                                                                         | <sup>13</sup> (c) 2 <sup>10</sup>                       | (d) 8 <sup>4</sup>                       |                                                |  |  |  |
| 11.                                               | . The number 1.10100100<br>(a) a natural number<br>(c) a rational number                          | 0100001 is<br>(b) a whole nui<br>(d) an irrationa       | mber<br>I number                         |                                                |  |  |  |
| 12<br>a                                           | . Distance of a point A(-4,-<br>. 4 unit b. 5                                                     | 5) from X axis is<br>i unit c                           | 4 unit                                   | d5 unit                                        |  |  |  |
| 13<br>a                                           | 8. If two complementary an<br>a) 13 <i>x</i> °, 5 <i>x</i> ° b) 2                                 | gles are in the ratio 13 :<br>25°, 65° c                | 5, then the angles a<br>) 65°, 25°       | ıre:<br>d) 65°, 35°                            |  |  |  |

14.If AB || CD, EF  $\perp$  CD and  $\angle$ GED = 135° as per the figure given below.



| The value of ∠AGE is:                                                                            |                        |                        |             |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|------------------------|------------------------|-------------|--|--|--|--|--|
| a) 120°                                                                                          | b) 140°                | c) 90°                 | d) 135°     |  |  |  |  |  |
| 15. The volume of hemisphere whose radius is r, is:                                              |                        |                        |             |  |  |  |  |  |
| a. 4/3 πr <sup>3</sup>                                                                           | b. 4πr <sup>3</sup>    | c. 2πr <sup>3</sup>    | d. ⅔ π r³   |  |  |  |  |  |
| 16.If the radius of a sp                                                                         | ohere is doubled, then | its volume will become | 9           |  |  |  |  |  |
| a. same                                                                                          | b. double              | c. four times          | d. 8 times  |  |  |  |  |  |
| 17. The longest chord of the circle is:                                                          |                        |                        |             |  |  |  |  |  |
| a. Radius                                                                                        | b. Arc                 | c. Diameter            | d. Segment  |  |  |  |  |  |
| 18. The mode of the given data: 4, 6, 5, 9, 3, 2, 7, 7, 6, 5, 4, 9, 10, 10, 3, 4, 7, 6, 9, 9 is; |                        |                        |             |  |  |  |  |  |
| a. 7                                                                                             | b. 9                   | c. 10                  | d. 6        |  |  |  |  |  |
| 19. The mean of x+2, x+3, x+4 and x-2 is:                                                        |                        |                        |             |  |  |  |  |  |
| a. (x+7)/4                                                                                       | b. (2x+7)/4            | c. (3x+7)/4            | d. (4x+7)/4 |  |  |  |  |  |
| 20.If volume and surface area of sphere are numerically equal then its radius is                 |                        |                        |             |  |  |  |  |  |

## Section B (each question carries 2 marks)

c. 2 unit

d. none of these

21. Rationalise the denominator of  $\frac{1}{\sqrt{3}-\sqrt{2}}$ 

22. Write 2.53 in the form of  $\frac{p}{q}$ 

a. 3 unit

23.Write *identity*  $(a + b + c)^2$  and then Expand  $(2x - y + z)^2$ 

b. 4 unit

24. prove that AB= CD, in the given concentric circles



25. Marks of top 20 students are given below, find the mean marks of the following data

| Marks             | 16 | 17 | 18 | 19 | 20 |
|-------------------|----|----|----|----|----|
|                   |    |    |    |    |    |
| No of<br>students | 3  | 5  | 2  | 6  | 4  |
|                   |    |    |    |    |    |

#### Section C (each question carries 3 marks)

26. Represent  $\sqrt{8.6}$  on number line. (step of construction need not to be written)

27. In which quadrant or on which axis the following point lie

A (2, -3) B (-3,4) C (-4,0) D (0, -5) E (-2, -3) F (2,4)

28. In the given figure, *POQ* is a line. Ray *OR* is perpendicular to line *PQ*. *OS* is another ray lying between rays *OP* and *OR*. Prove that  $\angle ROS = \frac{1}{2} (\angle QOS - \angle POS)$ .



29.If diagonals of a parallelogram are equal then show that it is a rectangle.

30. The diameter of a moon is approximately one sixth of the diameter of a earth ,find the ratio of (i) surface area (ii) Volume

**31**. Two circles having radii 5 cm and 3 cm intersect each other at two distinct points. If the distance between their centres is 4 cm, then what is the length of the common chord.

Section D (each question carries 5 marks)

32. In fig the side QR of triangle PQR is produced to a point S. If the bisectors of  $\angle PQR$  and  $\angle meet$  at point T, then prove that  $\angle QTR = \frac{1}{2} \angle QPR$ .



In figure PQ and RS are two mirrors placed parallel to each other .An incident ray AB strikes the mirror PQ at B and reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD. Prove that AB II CD



33. State and prove mid-point theorem.

34. Prove that  $x^3+y^3+z^3=3xyz$ , if x+y+z=0. using above identity find the value of  $(-15)^3+(7)^3+(8)^3$ .

Factorise : x<sup>3</sup>-23x<sup>2</sup>+142x-120

35.Height of 50 students of class 9 are given below. Draw histogram and frequency polygon of the given data.

| Height (in cm) | 120-130 | 130-140 | 140-150 | 150-160 | 160-170 | 170-180 |
|----------------|---------|---------|---------|---------|---------|---------|
| No of students | 8       | 9       | 11      | 12      | 7       | 3       |

#### Section E (Each case study carries 4 marks)

#### Case study question 1

Read the Source/Text given below and answer any four questions:



There is a square park ABCD in the middle of Saket colony in Delhi. Four children Deepak, Ashok, Arjun and Deepa went to play with their balls. The colour of the ball of Ashok, Deepak, Arjun and Deepa are red, blue, yellow and green respectively.

All four children roll their ball from centre point O in the direction of **XOY**, **X'OY**, **X'OY'** and **XOY'**. Their balls stopped as shown in the above image.

Answer the following questions:

| 1.<br>a  | What are the coo<br>) (4, 3)  | rdinates of the ball of A<br>b) (3, 4) | Ashok?<br>c) (4, 4) | d) (3, 3) |
|----------|-------------------------------|----------------------------------------|---------------------|-----------|
| 2.<br>a  | What are the coo<br>) (2, -3) | rdinates of the ball of E<br>b) (3, 2) | Deepa?<br>c) (2, 3) | d) (2, 2) |
| 3.<br>a  | What the line XO<br>) y-axis  | X' is called?<br>b) ordinate           | c) x-axis           | d) origin |
| 4.<br>a) | What the point O<br>y-axis    | (0,0) is called?<br>b) ordinate        | c) x-axis           | d) origin |
| 5.<br>a) | What is the ordina<br>-3      | ate of the ball of Arjun?<br>b) 3      | d) 4                | d) 2      |

## Case study question 2

Too different students were given equal amount of clay to make model of solid shapes. Mohan made a spherical ball of radius 7cm and measured its volume and surface area, whereas Ravi made a cone of radius 7cm and measured the height.

Answer the following (1+1+2)

- (i) Which formula Mohan used to find volume of clay
- (ii) Which formula Mohan used to find surface Area
- (iii) What is height of Ravi's model

## Case study question 3

Three shops are there on a circular path of radius 5m with centre o. shortest distance from shop A to B is 6m from B to C is 6m find.

- 1. Whether OB is perpendicular bisector of AC justify
- 2. Find the shortest distance from shop A to C(Length AC)